
1

An Analysis of Operations Modification in Deep
Neural Network in Hardware Perspective

Kai-Chieh Hsu, Chi-Sheng Yang and Chung-Hsuan Yang
{B03901026, B03901101, B03901160 }@ntu.edu.tw

Abstract—In this report, we reviewed many state-
of-art very deep neural networks, including AlexNet,
VGG net, Inception, ResNet and Xception. In addition
to the classification accuracy, we conduct many aspects
of tests on hardware resource consumption, namely,
number of parameters, computation complexity and
power consumption. We analyze the advantages and
trade-off of these deep neural networks in the view of
hardware implementation and provide some insight of
hardware-friendly designs.

I. Introduction
Since the great success of AlexNet in 2012 ImageNet

challenge, it has infused a Deep Neural Network (DNN)
boom on every aspects, including the field of image clas-
sification. The ultimate goal of ImageNet competition is
aimed to get the highest accuracy on large scale multi-class
image classification problem framework. However, they
only pursue optimal classification accuracy and neglect
problems encountered in practical applications such as
memory, computation complexity and power consump-
tion.

First, it is a common practice to run several trained
instances of a given model over multiple-crops of the
validation images. This practice is called “ensemble” tech-
nique to enhance the performance of the machine learn-
ing model, but would drastically increased the amount
of required computation resources and inference time to
achieve the reported accuracy. Furthermore, to achieve
higher accuracy on large-scale image classification, the
model architecture tends to be deeper and larger which
also implies the increase of required computation re-
sources. Fortunately, there were many interesting and
creative model architectures such as ResNet module and
Inception module proposed to increase the accuracy with
less parameters and shorter inference time. Besides, as
the great breakthrough on image classification brought by
DNN, there are more and more discussions about how
to customize the efficient hardware implementation on
various applications given the model architecture. Thus, it
is necessary to give an overall analysis including accuracy
and the relevant hardware costs of the model architecture.

In this report, we aimed at comparing state-of-the-art
DNN model architecture submitted for ImageNet Chal-
lenge over the pass 5 years in terms of the accuracy and
hardware resources requirement. We compared and ana-
lyzed these models on multiple metrics related to resource
utilization in actual deployments: accuracy, the number of

parameters, the number of operations, inference time per
image, and power consumption. The purpose of this report
is to stress the importance of these metrics, which are
essential for the practical implementation of the related
customized hardware accelerator in the future. This report
is organized as follows. The model architecture is reviewed
at section II. Simulation results and analysis are presented
in section III. Hardware-friendly designs are in section IV
and conclusion is drawn in section V.

II. Deep Learning Models
A. AlexNet

AlexNet was proposed by Alex Krizhevsky et al.[1] on
the 2012 ImageNet challenge. The great success of AlexNet
on image classification have grabbed the public‘s attention
on Convolutional Neural Network (CNN). They modified
the existed CNN architecture, and have a “deeper” ar-
chitecture in Fig. 1. Besides, several techniques used on
AlexNet like dropout and ReLu activation function have
been popular tricks in modern training and architecture
of neural networks.

B. VGG
Seeing the success of AlexNet, people started to find the

way to increase the accuracy of classifying images. One
structure was proposed by Karen Simonyan and Andrew
Zisserman, which is VGG network [2]. VGG is an acronym
for Visual Geometry Group which is their group name.
They adopted the simplest method, using 3x3 convolution
layers and 2x2 max pooling layers to make the network
deeper. Usually the number following VGG stands for the
umber of its layer.

Fig. 2. shows the basic structure of VGG-16 and we
could find out that just increasing the layers results a
better performance in classification. The result at a single
test scale is in Fig 3. A has 11 weight layers, A-LRN also
has 11 weight layers but has local response normalisation,
B has 13 weight layers, C has 16 weight layers but replace
three 3x3 convolution layer with 1x1 layers, D is VGG-16
and E is VGG-19 with 19 weight layers. It’s clear that the
error rate decreases with the number of layers increasing.

C. Inception I - III
1) Inception I: Although the depth of the network is

important, number of parameters and unexpected compu-
tational resources are the difficulty of deep neural network.



2

Fig. 1: AlexNet model architecture [1].

Fig. 2: VGG-16 model architecture

Fig. 3: ConvNet performance at a single test scale [2].

In order to solve this problem, GoogLenet [3] was proposed
in ImageNet Large-Scale Visual Recognition Challenge
2014, having the highest top-5 accuracy. The most im-
portant concept of GoogLeNet is the inception module,
causing GooLenet to be called ”network in network”. The
final form of inception module is in Fig. 4. Basically
it acts as multiple convolution filter outputs, that are
processed on the same input. Every inception module
does pooling at the same time, since pooling has been
essential for the success of current CNNs. All the outputs
are then concatenated using 1x1 convolution, allowing the
model to take advantage of multi-level feature extraction
from each input. The 1x1 convolutions before 3x3 and
5x5 convolutions and after 3x3 max pooling are used to
reduce the dimension of the outputs. Beside being used as

reductions, they also include the use of rectified non-linear
activation making them dual-purpose.

Fig. 4: Inception modle with dimensionality reduction [3].

Finally, by stacking some inception modules, we could
get the architecture of GoogLeNet as Fig. 5. Total number
of layers is 22. In the 2014 ImageNet challenge, GoogLeNet
got the first prize, showing that the modification of net-
work is also important for increasing the accuracy.

2) Inception II: For reducing the needs for layers to
continuously adapt to the new distribution, the inception
version 2 was proposed [4]. The difference between version
1 and version 2 is that inception v2 added batch normaliza-
tion. Normalizing parameters of each layer helps training
be faster and has better performance. Fig. 6. shows the
effect of using batch normalization. It’s obvious that model
with inception v2 would achieve the same accuracy with
fewer training steps.

3) Inception III: Since the gains of inception v1 arose
from the use of dimension reduction, it comes up with
inception v3 [5]. finding ways of factorizing convolutions.
First, it’s the factorization into smaller convolution. For
example, one 5x5 convolution can be changed to two 3x3
convolutions. By doing so, parameters decrease and so
does the computational cost. Fig. 7. shows how to replace
5x5 convolution with 3x3 convolution.

The other way is called spatial factorization into asym-
metric convolutions. One can replace any nxn convolution
by a 1xn convolution followed by a nx1 convolution and
the computational cost saving will increase dramatically



3

Fig. 5: The architecture of GoogLenet [3].

Fig. 6: Performance of inception v2 [4].

Fig. 7: Mini-network replacing the 5x5 convolutions [5].

as n grows. Fig. 8. demonstrates how to use 3x1 convo-
lution followed by a 1x3 convolution to replace one 3x3
convolution. The above two methods are the main change
which inception v3 adopted, making the module have less
parameters and more hardware-friendly.

D. ResNet
Because of the success of VGG net, one may think

directly adding the depth of the model results in better
performance. However, Fig. 9. shows that the error in-
creases compared to shallower model, which suggests a
non-overfitting problem.

Therefore, we need to modify model structure to ensure

Fig. 8: Mini-network replacing the 3x3 convolutions [5].

Fig. 9: Training process of plain network (without
residual connection) [6].

better performance. In [6], an identity mapping structure
was proposed and shown in Fig. 10. After adding identity
mapping, all the model have to learn becomes a small F(x)
instead of F(x)+x. Fig. 11. shows the training process of
model with identity mapping. It is observed ResNet-34
tenders lower error than ResNet-18 and converges faster
than plain-34 (in Fig. 9.). In other words, the residual
network is easier to optimize and the depth of model really
improves the performance.

E. Xception
It is observed inception module in Fig. 4. first uses a 1x1

convolution to map cross-channel correlations and then
separately maps the spatial correlations in every flow. We



4

Fig. 10: Residual learning block [6].

Fig. 11: Training process of plain network (with residual
connection) [6].

can consider an extreme version of inception module which
is shown in Fig. 12., namely, each output channel of 1x1
convolution goes to a spatial convolution.

Fig. 12: Extreme version of inception module [7].

Motivated by this, the author proposed a new struc-
ture to reverse the order of 1x1 convolution and spatial
convolution shown in Fig. 13 [7] . In addition to the
different operational order, the Xception module doesn’t
have non-linear activation function such as ReLU after
spatial convolution, which will deteriorate the validation
accuracy.

Furthermore, the author adopted residual learning to
accelerate training process. Fig. 14. shows a middle flow

Fig. 13: Xception module.

of Xception architecture and Fig. 15. shows the effect of
residual learning.

Fig. 14: Middle flow of Xception arthitecture [7].

Fig. 15: Training process with and without residual
connections [7].



5

III. Simulation Results
In this section, we report our results and comparisons.

We analyzed following models: AlexNet, VGG16, VGG19,
ResNet50, ResNet152, Inception v3, and Xception. Some
of them are viewd as states-of-art models in ImageNet
challenge. Similar to what [8] have done, we have mea-
sured accuracy, the number of parameters, the number
of floating point operations (FLOPS), inference time per
image, and power of each model. We will first prevent our
experiment setup and then our simulation results.

A. Experiment Setup
Our testing data is the validation data of ILSVRC 2012

provided by ImageNet. There are 50000 images and 1000
classes in the database. The dimensions (width and length)
of each image size range from 200 to 600. The required
memory of database is about 6.8 GB.

We used Python3 and the related machine learning
packages including Tensorflow 1.4 and Keras 2.0 to
do our experiment on software. On hardware, we uti-
lized 2 GHz Intel Core i5 CPU with 2 cores to mea-
sure the inference time per image on each architecture
mentioned above, and utilized the command provided
by Nvidia Cuda on the terminal: nvidia-smi -i 0 --
query-gpu=index,timestamp,power.draw,clocks.sm,
clocks.mem,clocks.gr --format=csv -l 1 to monitor
the power consumption on Nvidia GeForce GTX 1080
GPU when the neural network is doning inferences.

B. Analysis
1) Accuracy: Fig. 16 and Fig. 17 showed one-crop accu-

racies of each model. We could find that the performance
on accuracy from AlexNet to Xception model has a great
improvement and that the performance of recent mod-
els like Inception v3 and Xception have slight difference
between them which implies that the performance of
accuracy has been gradually having less improvement.

Furthermore, we could dispel a myth of blindly “deeper”
model architecture from both Fig.16 and Fig.17. It is ob-
vious that VGG16 & VGG19, and ResNet50 & ResNet152
have similar model architecture but the number of layers,
and that the deeper versions of both model architectures
only have very limited improvements on accuracy which
are far less than the improvements resulted from the
modification of model architecture.

2) The number of parameters: To have better perfor-
mance on accuracy, it is inevitable to have more pa-
rameters to enhance the learning capacity of the model.
However, it would result in the high cost of large amount
of memory to record the numerous parameters Thus, it
is an critical issue to have the less parameters while still
maintaining the high accuracy on image classification.
Fig.18. shows that ResNet, Inception v3 and Xception
have less parameters than traditional deep CNN such as
AlexNet or VGG and even have better performance on
image classification. It is verified that the special modifi-
cations like Inception module and Residual module indeed
have higher efficiency of parameter utilization.

Fig. 16: Top-1 accuracy of each model.

Fig. 17: Top-5 accuracy of each model.

Fig. 18: The total number of parameters on each
architecture.



6

3) The number of operations: Similarly, in order to
have better performance on image classification, it is
unavoidable to have higher number of operations. In our
experiment, we define the number of operations as the
total number of addition and multiplication conducted
when doing an inference of one image. Operations count
is essential for establishing a rough estimate of inference
time and the size of hardware circuit in case of customized
implementation of neural network accelerator. Fig.19 gives
the result similar to that in Fig.18. Again, it shows that
special modifications of model architecture have great
benefits including less usage of parameters, less utilization
of operations and higher performance on accuracy.

Fig. 19: The total number of operations among each
model.

4) Inference time: Fig.20. reports the inference time per
image on each architecture. Fig.21. demonstrates the high-
positive correlation between the inference time and the
number of operations. As we mentioned above, the number
of operations and the number of parameters are critical to
the cost of the hardware implementation of the customized
neural network accelerator. Fig.21. shows that AlexNet
has the least inference time due to the least operations
count among other model, and the recent model architec-
tures like ResNet50, Inception v3 and Xception have less
number of parameters and the acceptable inference time
and operations count. To have better evaluation among
all architectures, Fig.22. shows the relationship among
accuracy, inference time per image and the number of
parameters. When considering the trade-off between the
performance (accuracy and inference time) and the cost
(the number of parameters and operations count) of each
model, we could find that ResNet50, Inception V3, and
Xception are the most competitive models among others.

Fig. 20: Inference time on each architecture.

Fig. 21: Inference time per image v.s. Operations ∝ the
number of parameters

Fig. 22: Inference time per image v.s. Top 1 accuracy ∝
the number of parameters

5) Power: Fig.23. reports the power measurements.
The power consumption of Nvidia Geforce GTX 1080



7

GPU in idle state is about 17W. Fig.24. shows that power
consumption is positive correlated to the number of oper-
ations and the number of parameters. Besides, we could
also find that Xception and ResNet50 outperformed other
architectures with respect to power consumption and the
number of parameters.

Fig. 23: Power consumption of each model

Fig. 24: Power v.s. Inference time per image ∝ the
number of parameters

All the simulation results are summarized in Table. I.
which suggests Xception and Inception have the best clas-
sification accuracy and ResNet50 has the best hardware
resource consumption.

IV. Hardware-Friendly Design

Since there are a lot of matrix-matrix and matrix-
vector operations in CNNs, these operations dominate
the computational cost of inference. Therefore, systolic
array is reused in CNN, making the calculation more
efficient. Fig. 25. shows the concept of systolic array.
We want to calculate matrix A multiplied with matrix
B, so we let the parameter get into the small module
sequentially. Every small module just do the same thing

Fig. 25: Basic concept of systolic array

which is multiplication, saving the answer in it and pass
the parameter to the next module.

Quantization is also one method to reduce hardware
resources and also the computation time. Mainly, they
just change the floating point design to the fixed-point
design. Not only the design will be simpler but also the
amount of memory that has to be used decreases. Accuracy
will be affected, but recent research has shown that by
retraining the network the decrease of accuracy can be
made acceptably small.

Pruning is to remove the weight and neuron values
which are close to zero or by one own decision rule to
determine which value can be pruned. This can avoid
unnecessary computing and reduce the number of the
parameters.

Memory access is a critical problem in DNNs. Fig. 26.
shows a multiply-and-accumulate (MAC) operation. It is
observed for each MAC operation, there will be 4 memory
access. Consider AlexNet having about 724M MACs and
it will have about 2.9G times memory access, which is a
non-tolerable hardware cost.

Fig. 26: Memory access of a MAC operation [10].

The author in [10] suggests three kinds of data reuse,
which is shown in Fig. 27.

• Convolutional Reuse : Unlike fully-connected layer
where each edge between two nodes are different,
convolutional layer using same filter to form sliding
window. Therefore, about E2 parameter can be re-
duced, where E is the size of the output feature map.

• Image Reuse : After we load an input feature map, we
will use every filter to conduct convolution. In other
words, we can reduce the memory access of input
feature map by M, where M is the number of filters.



8

Model Top-1 Acc Top-5 Acc Number of
parameters (M) Power (W) GFLOPs Inference Time

(ms)
AlexNet 52.09% 76.06% 60.96 - - - 1.27 90.81
VGG16 64.27% 85.59% 138.36 200 31.06 818.54
VGG19 64.73% 85.88% 143.67 215 39.40 1010

ResNet50 67.99% 88.35% 25.64 145 7.80 332.2
ResNet152 70.63% 89.78% 60.50 155 22.83 808.51

Inception III 76.27% 93.75% 23.85 175 11.51 740.8
Xception 77.52% 93.03% 22.91 145 16.87 709.34

TABLE I: Summary of simulation results. The best results are shown in red.

• Filter Reuse : If we consider to do a batch of N
input feature maps, we can reuse filter weights to do
convolution of all N input feature maps. Therefore,
we can reduce memory access to filter weights by N .

• Partial Sum Reuse : After every convolution, we need
to update partial sum and needs a memory read and
a memory write. If we store partial sums nearby, we
can reduce a lot of memory access.

Fig. 27: Three kinds of data reuse [10].

V. Conclusion
Table. I. shows ResNet, Inception v3 and Xception are

among the best models in the trade-off of classification
accuracy and hardware resources consumption. In order
to know the trade-off more specifically, we depict Fig. 28.
and Fig. 29. If the accuracy of about 70% is acceptable,
ResNet50 will be the optimal choice. However, if accuracy
is strictly-required, Xception and Inception v3 are both
reasonable choices with Xception slightly performs better
in power consumption and inference time. Fig. 4. and Fig.
13. show the basic module of Inception v3 and Xception,
respectively. Since the module of Xception is simpler, the
control signal, pipeline stage and special ALU is easier to
design, suggesting Xception is easier to implement.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks”, 2012
[2] K. Simonyan, and A. Zisserman, “Very Deep Convolution Net-

works For Large-Scale Image Recognition,” 2015
[3] C. Szegedy, W. Liu, Y. Jia et al, “Going deeper with convolu-

tions,” IEEE conf. Computer Vision and Pattern Recognition,
2015

[4] S. Loffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”,
2015

Fig. 28: Top-1 accuracy v.s. Operations ∝ the number of
parameters.

Fig. 29: Top-1 accuracy v.s. Power ∝ the number of
parameters.

[5] S. Ioffe, V. Vanhoucke, C. Szegedy et al., “Rethinking the
Inception Architecture for Computer Vision,” 2015

[6] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning
for Image Recognition,” 2015

[7] F. Chollet, “Xception: Deep Learning with Depthwise Separable
Convolutions,” 2017

[8] A. Canziani, E. Culurciello and A. Paszke, “An Analysis of Deep
Neural Network Models For Practical Applications,” 2017

[9] Y. J. Lin and T. S. Chang, “Data and Hardware Efficient Design
for Convolutional Neural Network,” IEEE Trans. Circuits and
Systems I: Regular Papers, 2017, pp. 1-10

[10] Y. H. Chen, J. Emer and V. Sze, “Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016, pp. 367-379

[11] K. Kiningham, M. Graczyk and A. Ramkumar, “Design and
Analysis of a Hardware CNN Accelerator”


	Introduction
	Deep Learning Models
	AlexNet
	VGG
	Inception I - III
	Inception I
	Inception II
	Inception III

	ResNet
	Xception

	Simulation Results
	Experiment Setup
	Analysis
	Accuracy
	The number of parameters
	The number of operations
	Inference time
	Power


	Hardware-Friendly Design
	Conclusion
	References

