
 1

CA final report -- Pipeline MIPS
B02901011 趙祐毅
B02901120 羅志軒
B03901026 許凱傑

2017.6.21

Table	of	Contents	

Introduction	...	2	
A.	 Target	...	2	
B.	 Division	of	work	..	2	

Baseline	...	3	
A.	 Cache	..	3	

1.	 Design	Architecture	...	3	
B.	 MIPS	...	3	

1.	 Design	Architecture	...	3	
2.	 Special	Design	..	6	
3.	 Critical	path	...	7	

C.	 Synthesis	Result	and	Analysis	..	8	

Extension	...	9	
A.	 Branch	Prediction	..	9	

1.	 Target	..	9	
2.	 Design	Architecture	...	9	
3.	 Synthesis	Result	and	Analysis	..	9	

B.	 Multiplication	/	Division	..	12	
1.	 Target	..	12	
2.	 Iterative	approach	...	12	
3.	 Simulation	...	13	
4.	 Synthesis	..	14	

C.	 Two-Level	Cache	...	15	
1.	 Description	..	15	
2.	 Experiment	..	15	

References	...	16	

 2

Introduction

A. Target
Design a pipelined MIPS processor with instruction cache and data cache, and support the following
instructions..

B. Division of work
- 趙祐毅

Baseline: PCsrcLogic, nextPCcalculator, Branch prediction, hazard detection
Extension: Branch prediction

- 羅志軒
Baseline: forwarding unit, ALU, precontrol unit, main control unit
Extension: Two-level cache

- 許凱傑
Baseline: Initial architecture design, registers, other wires.
Extension: Multiplication/ division

 3

Baseline

A. Cache

1. Design Architecture
We use Direct-mapped cache here.

 I_cache D_cache

B. MIPS

1. Design Architecture
• Modules
1) IF_DEC_regFile
2) DEC_EX_regFile
3) EX_MEM_regFile
4) MEM_WB_regFile
5) branch_prediction
6) PCSrcLogic
7) nextPCcalculator
8) I_cache
9) precontrolDec
10) Hazard_detection
11) mainControl
12) Extender
13) registerFile
14) ALU
15) forwarding
16) D_cache

 4

• Module inputs/ outputs

MIPS 1. IF_DEC_regFile

2. DEC_EX_regFile 3. EX_MEM_regFile

4. MEM_WB_regFile 5. branch_prediction

 5

6. PCSrcLogic 7. nextPCcalculator

9. precontrolDec 10. Hazard_detection

11. mainControl 12. Extender

 6

13. registerFile 14. ALU

15. forwarding

2. Special Design
branch in EX
We do Branch prediction in IF stage, and get Branch result in EX stage. The reasons are:
a) If we get branch result in DEC stage, we need to do several steps. We should read data from registerFile,

compare the data, if the result is different from prediction, we should pass the signal to PCsrcLogic to set
PC value. Therefore, it could yield too long critical path.

b) If we do branch in DEC stage, we have to redesign the forwarding unit to ensure that the value read from
registerFile is correct. It would cost some effort.

J/ JAL
We decide whether the instruction if J/JAL in IF stage. If so, nextPCcalculator can get the address immediately,
so that we can save a NOP.

Pre-control Unit
We use a ‘Pre-control Unit’ to decode instruction in IF stage, so that branch/ J/ JAL can be processed
immediately. Also, PCscrLogic, nextPCcalculator and hazard detection unit work to do successive steps.

JALR/ JR
We do JALR/ JR in EX stage because we need to read from registerFile as the reason we do branch in EX
stage.

JAL/ JALR
When we get JAL/ JALR, we need to pass PCplus4 signal and save it. Rather than add one more bus only for
PCplus4, we take advantage of original buses. We add mux to the output of registerFile, one has input PCplus4,
another has input 0. Then, we use adding process to save the value. We can decrease two 32-bit registers and

 7

two 32-bit wires.

Flush mechanism
When branch prediction is wrong or JR/ JALR happens, we need to flush IF and DEC signals. Here is our
design:
a) We add flush signal input to IF/ DEC register, which do the same thing as reset.
b) For DEC stage, we add mux to the maincontrol signal and set MemRead, MemWrite, RegWrite,

Branch_DEC, JumpReg to ‘0’. We don’t need to reset all signals, so as to save ‘mux’.

Hazard detection, Branch prediction, PCsrcLogic, nextPCcalculator relationship
Hazard detection has some main tasks:
a) Catch ‘stall’ signal from D_cache and I_cache. Then, output stall signal.
b) Tell is there’s lw_use hazard.
c) Input branch result and the result of branch prediction, and output ‘pred_cond’ signal. (If 1 means

prediction wrong, we need to flush.)
Branch prediction:
 According to the prediction and result, change the state of FSM.
PCsrcLogic
 According to stall, Jump, Branch signals, output right PCsrc signal.
nextPCcalculator
 Output ‘nextPC’ according to PCsrc signal.

PCsrcLogic Priority
When working on PCsrcLogic module, we need to consider the priority of the signals. As following:
a) Stall is #1
b) Signals from EX stages (JR/ JALR/ Branch) is #2
c) If branch prediction right or nothing happens, check the signal of IF stage. (Branch/ J/ JAL)
* J/ branch should not appear at the same time.
* Refer to the following block diagram.

3. Critical path
Our critical path happens when:

 8

a) Branch happens.
b) Branch takes data from MEM stage, so forwarding unit sends data back.
c) ALU calculation tells branch result.
d) PCsrc tells branch prediction was wrong.
e) Send correct PC to PCreg.

C. Synthesis Result and Analysis
• Direct-mapped I-cache/ D-cache
• Cell Area: 291905 (µm^2)
• Clock cycle: 4 (ns)
• Timing of hasHazard TB: 8266 (ns)
• Area(Cell)*T: 2.41 * 10^(9) (µm^2 * ns)

 9

Extension

A. Branch Prediction

1. Target
We want to know the relationship between prediction policies and different testbenches.

2. Design Architecture
4 designs
a) No BPU(taken): Always do taken
b) No BPU(not taken): Always do untaken
c) 1-bit BPU

d) 2-bit BPU

3. Synthesis Result and Analysis
Experiment design (A, B, C)
A: number of branch not taken
B: number of branch not taken, taken interleaved
C: number of branch taken

 10

Clock cycle = 6 ns

Exp (A, B, C) No BPU(taken) No BPU(not taken) 1-bit BPU 2-bit BPU

(10,10,10) 1395 1431 1377 1311

(20,10,10) 1695 1611 1557 1491

(50,10,10) 2595 2151 2097 2031

(100,10,10) 4095 3051 2997 2931

(10,20,10) 1755 1791 1857 1671

(10,50,10) 2835 2871 3297 2751

(10,100,10) 4635 4671 5697 4551

(10,10,20) 1839 X 1821 1761

(10,10,50) 3105 X 3081 3027

(10,10,100) 5265 X 5235 5193

Because the clock cycle is not long enough for ‘NO BPU’, we can’t finish the experiment in some situation. We
prolonged the clock cycle to 8ns.

Clock cycle = 8 ns

Exp (A, B, C) No BPU(taken) No BPU(not taken) 1-bit BPU 2-bit BPU

(10,10,10) 1668 1796 1700 1572

(20,10,10) 2068 2036 1940 1812

(50,10,10) 3268 2756 2660 2532

(100,10,10) 5268 3956 3860 3732

(10,20,10) 2148 2276 2340 2052

(10,50,10) 3588 3716 4260 3492

(10,100,10) 5988 6116 7460 5892

(10,10,20) 2148 2476 2180 2052

(10,10,50) 3508 4676 3540 3412

(10,10,100) 5828 8396 5860 5732

 11

Result analysis

1. 2-bit predictor yeilds the best result among the three graph.
2. No BPU(taken) did the worst when changing ‘A’ (number of not taken)
3. No BPU(not taken) did the worst when changing ‘C’ (number of taken)
4. 2-bit BPU does only a bit better than others because if can’t handle the situation of taken/ not taken

interleaved.
5. We can try to use the taken history to predict. However, it could enlarge the size of BPU. Also, we

can’t tackle the condition of continuous Branch (previous has not been proven before the next branch
comes.)

 12

B. Multiplication / Division

1. Target
a) support 4 kinds of instruction, namely,

mult $rt, $rs ({$HI, $LO} = $rt ×$rs)

div $rt, $rs ($HI = $rt / $rs, $LO = $rt % $rs)

mfhi $rd ($rd = $HI)

mflo $rd ($rd = $LO)

b) support signed multiplication and division

2. Iterative approach
a) Reason
1) less area: Pipeline approach will need 2 or more mult/div unit, many registers to store results
2) maybe total less execution cycle:

The basic implementation of pipeline approach takes 20 cycles to finish mult/div and iterative approach
needs 36 cycles. However, pipelined approach will need 1 more cycle for other instruction.
Therefore, if the percentage of mult/div instructions doesn’t exceed 1/16, iterative approach takes less
number of execution cycles to finish.

b) Design Architecture

1) 4 32-bit adder to implement 2’s complement
Convert Reg_hi, Reg_lo, multiplicand(dividend) and multiplier(divisor) into their 2’s complement if
needed.
Instead of using 64-bit adder to do 2’s complement of {Reg_HI, Reg_LO}. We implement it by using a
MUX to do both signed multiplication and division result.

2) 1 32-bit adder to do subtraction and addition
We don’t need 32-bit subtractor by store divisor as negative number.

3) stallmultdiv: stall other instructions until mult/div finished

 13

c) Flow Chart

3. Simulation
a) testbench

unsigned signed

Multiplication Division

 14

b) Result

unsigned signed

1) 603 cycles for unsigned and 615 cycles for signed

4. Synthesis
a) Origin MIPS_Pipeline.v
1) Area: 31658 um^2
2) Cycle: 4.0nS (for other instruction except MULT/DIV)
b) This Design
1) Area: 49171 um^2
2) Cycle: 4.8nS
3) Execution Time: 2508 / 2556 nS
c) Improvement
1) use 3 comparators to omit iterations only with shift. See whether Reg_lo[1], Reg_lo[2:1] and Reg_lo[3:1]

are all zero(s) and shift multiple bits correspondingly.(This improvement is inspired by the presentation of
黃安、吳宇、蔣采容)

i. Area: 48218 um^2
ii. Cycle: 4.4 nS

iii. Execution Time: 1621.4 / 1665.4 nS
2) omit the 32nd iteration(i.e. there is only 31 iterations for mult/div)

below is the result of both a) and b)
i. Area: 49171 um^2

ii. Cycle: 4.2 nS
iii. Execution Time: 1518.3 / 1560.3 nS

 15

3) Flow chart

C. Two-Level Cache

1. Description
Cache is a part of memory hierarchy between CPU and memory used to reduce the average cost to
access data from the main memory. Most modern computer have at least three independent caches: an
instruction cache, a data cache, and a unified (or separate) L2 cache for both D-cache and I-cache. In
this part, we try to implement a separate L2 cache with NC-verilog code. The total size of our L2
caches is 256 words (128 words for each). In each L2 cache, there are 32 blocks with 4 words in each
block.
To demonstrate the effectiveness of L2 cache, we compare the execution time and average memory
access time between caches with different architecture below.

2. Experiment
a) Direct-mapped L1 cache vs 2-way set associative L1 cache (hasHazard)

 Direct-mapped Direct-mapped 2-way set associative
Synthesization cycle 2.0 2.0 2.0

Test bench cycle 4.0 4.8 4.8

Multiplication Division

 16

Execution time 8266000 PS 9943200 PS 8944800 PS
Execution cycle 2066 2071 1863.5

Cell area (um^2) 290605.063220 290605.063220 341116.289725
Total area (um^2) 2197741.587116 2197741.587116 2629474.717551
From the table above, we can see that 2-way set associative cache makes progress on execution cycle,
yet in the same time expanding cell area from 290605.063220 to 341116.289725. The extra area of 2-
way set associative cache is mainly from different replacement algorithm (LRU), in which release bit
must be used.
(In this part, for some reason, we can’t run 2-way set associative cache under same smallest test bench
cycle time (4.0 ns) as Direct-mapped cache, so we didn’t compare execution time between them.)

b) L1 cache vs L1+L2 cache (simulation time in TestBed_L2Cache.v)

 L1 L1+L2
L1 L2 Associative Direct Two-way

Original L2 tb 55495 NS 54465 NS
Nb = 3 4905 NS 4855 NS
Nb = 5 14985 NS 14695 NS
Nb = 8 42135 NS 41485 NS

 Nb = 10 70595 NS 67585 NS
The table above demonstrates the improvement in execution time with L2 cache. As the number of Fibonacci
Series increases, we can compare the difference of effectiveness between L1 cache and L1+L2 cache.

c) L2 cache avg. memory access time

(Hit time: 10 NS, Miss penalty: 58 NS)
 L1 Miss rate L2 Miss rate Avg. MAT without L2 Avg. MAT with L2

Nb = 3 0.08 0.035 14.64 10.1624
Nb = 5 0.022 0.013 11.276 10.0166
Nb = 8 0.009 0.006 10.522 10.003132

 Nb = 10 0.006 0.009 10.348 10.003132
This table we can see how L2 cache benefit to L1 cache. With L2 cache, average memory access time reduces
almost close to hit time, especially when miss rate is high.

d) L1 cache vs L1+L2 cache (synthesis in TestBed_hasHazard.v)

 L1 L1+L2 L1+L2
L1 L2 Associative Direct Two-way Two-way

Synthesization cycle 2.0 5.0 2.0
Test bench cycle 4.0 10.0 9.5
Execution time 8266000 PS 18305000 PS 17693750 PS

Total area (um^2) 2197741.587116 7511647.332870 7592994.770748
This table shows some problem of our L2 cache. Logically, L1+L2 cache will beat L1 cache in Execution time.
However, for some reason, although we set cycle to 5.0 while synthesization, our L2 cache only passes
TestBed_hasHazard.v when setting cycle to larger than 10.0 in test bench. We guess the cause probably is we
didn’t add flip-flop between MIPS and cache, which makes delay affect our signal and leads to some error.

References
• MIPS design architecture
• Branch prediction -- wiki

