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DOA estimation algorithms

« Conventional algorithms
* Multiple Signal Classification (MUSIC) [1]
 Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [2]

* Increase degrees of freedom (DOFs)
« Khatri-Rao subspace (KR) [3]
« Co-prime array (CPA) [4], [5]
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Co-prime Array (CPA)

 Array configuration
 Subarray 1 is composed of 2N, sensors at spacing N-d.
 Subarray 2 is composed of N, sensors at spacing N, d.
 Total 2N; + N, — 1 sensors in the CPA.
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Fig. 1. Configuration of CPA
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DOF of Co-prime Array

* DOFs are increased to
* 3N;N, + N; — N, unique virtual sensors
* N;N, + N; — 1 consecutive virtual sensors
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Proposed triply primed array (TPA)

* \We propose a new array configuration, triply primed array (TPA)

e The DOF Is further extended to O(N;N,N3).

 We propose a dimension-reduced method to significantly decrease the
computational complexity.
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Fig. 2. configuration of TPA
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Configuration of TPA

« A TPA Is composed of three subarrays, with N;, N, and N5 sensors, at
spacing N,N;d, N;N;d and N, N,d.

* Total number of physical sensors: N = N; + N, + N; — 2.
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Fig. 2. configuration of TPA




Properties of TPA

* The number of unique lags:

Tu = 2N1NoN3 + N{yNo + NoN3 + N3N; — 8
* The number of positive consecutive lags:

7. = N{No+ NoN3+ N3Ni—1

By using fourth-order difference, higher DOFs are achieved In
unique lags and consecutive lags.
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 Received data: X € cV*%¢  where Q is the number of observed time
frames and L is the length of each time frame.

» Each column of X is composed of received signals from three
subarrays z[¢| = A - 5[¢] + n[d] ,

hsll

fl[f] I 1 ni [f]
)= | z[0) |, A= Ay, |, nl=| 6l
Kz | As | n3[l] |

where A, A, and A are the steering matrices of the three subarrays,
n1[¢], no[¢] and ng[¢] are 1.1.d. noise vectors of the three subarrays.
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Covariance matrix of TPA Signals dons Tabws Uniesiy
~ 1 qlL—1
« Construct covariance matrix as Rowg = 7 Z 74 [0z [0]

- _ ¢=(qg—1)L
which 1s composed of submatrices

Rapq = E{@L[025 [0} = Ay - Dyug - AL + 02 Was

’

Z jkNg (uN2—vN7)dsin 6, 4 Ui;
m=1
u=v=0~0
Ryg[u, v] = < Each entry corresponds to a
M sensor location in the virtual TPA
Z quejkNg(uNg—le)dsm Qm,
m=1
u=#0orv#0




Second-order manifold signals

 Second-order manifold signals:
— —_/ = —/ _
Go=vec{Rppg) Yo =¥~ Uy E{u)

* The entries In a submatrix corresponding to the same lags are averaged.




Fourth-order manifold signals

 Construct fourth- order manifold signals as
}:3 — —-Z_” Tl Ezvec{}:%yy}

 MUSIC or ESPRIT cannot be directly applied to z

« Spatial-smoothing MUSIC (SSM) and compressed sensing (CS)
methods are applied




Dimension-reduced method

 Before applying SSM or CS to solve for the DOA, a dimension-
reduced method Is used to

« The number of overlapped lags in the second-order covariance
matrix is small, but that of the fourth-order covariance matrix iIs large.

 The overlapped lags of each entry in fzyy IS recorded in a dictionary.

By taking the average of entries with the same lag, a dimension-
reduced fourth-order manifold signal is formed as z.. .




Spatial-smoothing MUSIC [4]

 Conventional SSM requires the received signal vector be derived from
consecutive lags, which iIs extracted from z,. and represented as

Ze = Ze|=Tel, Ze| =T + 1), - 2e|Te — 1, ZC[TCHt
 An SSM matrix is constructed as

Rzz ,S8 — T ZC£ZC£

TC |

Where z,¢ = [z[€ — 7], 26 — e+ 1], 2ol — 1) %€ 0 < € < 7.

* The MUSIC is then applied to the SSM matrix to estimate DOA.
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Compressed sensing (CS) [5]

* Although the SSM takes low computational load, it does not make use of
the receiving data from nonconsecutive lags and its resolution is limited.

« The CS approach can be applied to cope with the above shortcomings by
exploiting the sparsity properties of source signals in the angular domain.

* We formulate an £;-norm optimization problem:
IE;) = arg min [,]l1 st ||z — C’;’q)c g2 < €
Vg

where 5’;@0 IS the steering matrix of the fourth-order virtual array at a
specified resolution.




Simulation Setting

 The length of each time frame Is randomly peak from U[300,700]
- The DOA:s are at uniform spacing between [—60°, 60
* In each scenario, 100 Monte Carlo realizations are simulated.
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Fig. 3. Source Signals

ationa




| PR e TR T T r T T T e T E T T T T s T R T T T T T T — ST —
2 08} 208

206 2,

f = 0.6

_.; 04+t _% 04}

= 0.2 > 02

O < 2 O h
60 -50 -40 -30 20 -10 0 10 20 30 40 50 60

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

Azimuth (deg) Azimuth (deg)

Fig. 4: Normalized spectrum of (left) TPA (3, 4, 5) and (right) CPA (3, 5), 61 sources, SNR =5 dB, L =500, Q = 1, 000.

Gray lines: actual DOAs, black lines: estimated DOA:s.
TPA detect all 61 sources, CPA misses some sources and falsely identify some sources.
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RMSE versus SNR

* TPA with either SS-MUSIC or CS
04 y approach predicts more accurate

DOAs under all SNRs, especially
when SNR < 0 dB.

* The CS approach predicts more
accurate DOASs than SS-MUSIC
because the former makes use of all
the unique lags, but the latter can use

SNR (dB) only consecutive lags.
Fig. 5: RMSE of DOA estimation versus SNR, 36
sources, L =500, Q = 1, 000.
: TPA (3,4, 5), CS; —«—: TPA(3, 4, 5), SSM;
— o —: CPA(3, 5), CS; ———: TPA(3, 5, 7), CS.




RMSE versus frame length
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Fig. 6: RMSE of DOA estimation versus length of time
frame, 36 sources, Q =1, 000, SNR = 0dB.

: TPA (3,4, 5), CS; —+« — TPA(3, 4, 5), SSM;
—o—:CPA(3,5),CS;———TPA(3, 5, 7), CS.

« TPA with CS approach is hardly affected by
the change of L due to higher DOF.

* The RMSE of CPA with CS approach and
TPA with SS-MUSIC increases when L IS
different from 500, possibly because the
estimation of power in each time frame
becomes less accurate when L is different
from 500.
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RMSE versus number of frames
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Fig. 7: RMSE of DOA estimations versus number of time
frames, 36 sources, L =500, SNR = 0dB.
——TPA(3,4,5),CS; —«—: TPA(3, 4, 5), SSM,;

— o —: CPA(3, 5),CS; ———:TPA(3, 5, 7), CS.

« TPA with CS approach gives more accurate
estimation than the other two, and the
accuracy degrades monotonically when the
number of frames decreases.

« SS-MUSIC is a subspace-based algorithm,
which 1s more sensitive to the accuracy of
covariance matrix. The covariance matrix can
be estimated more accurately as the number
of time frames increases.




Conclusion

« A TPA configuration Is proposed to extend the DOFs In terms of the
numbers of unigue lags and consecutive lags.

A dimension-reduced algorithm is proposed to speed up the algorithm.

« Simulation results show that the TPA can detect more sources than
conventional CPA, and the RMSE is also lower.




